Course Number and Name

BEC010 - VLSI DESIGN

Credits and Contact Hours

3 and 45

Course Coordinator's Name

Ms M.Jasmin

Text Books and References

REFERENCES:

- 1. Douglas A.Pucknell, K. Eshragian, Basic VLSI Design , Third edition, PHI, 2009
- 2. Neil.H.E.Weste,KamaranEshraghian,—PrinciplesofCMOSVLSIDesign ,Second Edition AddisoWesleyPublications,2002
- 3. SamirPalnitkar,—VerilogHDL–GuidetoDigitaldesignandsynthesis ,SecondEdition Pearson Education,2009
- 4. WayneWolf, ModernVLSIDesign , PearsonEducation , 2003
- 5. https://en.wikipedia.org/wiki/Very-large-scale_integration

Course Description

- To learn basic CMOS Circuits.
- To learn CMOS process technology.
- To learn techniques of chip design using programmable devices.
- To learn the concepts of designing VLSI Subsystems.

Prerequisites	Co-requisites								
Electronics Circuits &	Nil								
Principles of Digital Electronics									
required, elective, or selected elective (as per Table 5-1)									
Selected Elective									
Course Outcomes (COs)									

CO1: Identify the various IC fabrication methods.

CO2 : Express the Layout of simple MOS circuit using Lambda based design rules.

CO3 : Apply the Lambda based design rules for subsystem design

CO4 : Differentiate various FPGA architectures.

CO5: Design an application using Verilog HDL.

CO6 : Concepts of modeling a digital system using Hardware Description Language.

Student Outcomes (SOs) from Criterion 3 covered by this Course

COs/SOs	а	b	С	d	е	f	g	h	i	j	k	
CO1	Н					М		Н				
CO2	М	L	Н					М	L	Н		
CO3	М			Н				М			Н	
CO4	М				Н		М	М				
CO5		L							L			
CO6						Н						

List of Topics Covered

UNIT I MOS TRANSISTOR THEORY

MOSFET– Enhancement mode & Depletion mode – Fabrication – NMOS, PMOS – CMOS fabrication – P-well, N-well, Twin-Tub, SOI – BiCMOS Technology –Comparison with CMOS.

UNIT II MOS CIRCUITS AND DESIGN

Basic Electrical properties of MOS circuits – DC Equations, NMOS & CMOS inverter –Second Order Effects– Basic circuit concepts-Sheet resistance-Area Capacitances-Capacitance calculations-Inverter delays–Scaling of MOS Devices –Scaling Models and Scaling Factors-MOS layers – Stick diagram – NMOS Design Style – CMOS Design style – lambda based design rules– Simple Layout examples

UNIT III SUBSYSTEM DESIGN & LAYOUT

Switch Logic – Pass transistors and transmission gates – Two input NMOS, CMOS gates: NOT– NAND– NOR gates – Other forms of CMOS logic – Static CMOS logic-Dynamic CMOS logic – Clocked CMOS logic - Precharged domino CMOS logic – Structured design of simple Combinational logic design– Multiplexers – Clocked sequential circuits – Two phase clocking – D-Flip-flop-Charge storage - Dynamic register element –Dynamic shift register

UNIT IV PROGRAMMABLE LOGIC DEVICES

Programmable Logic Devices – PLA, PAL – Finite State Machine design using PLA – Introduction to FPGA – FPGA Design flow – Architecture – FPGA devices: Xilinx XC 4000 – Altera cyclone III

UNIT V VERILOG HDL DESIGN PROGRAMMING

Basic concepts: VLSI Design flow, Modeling, Syntax and Programming, Design Examples:Combinational Logic – Multiplexer, Decoder/Encoder, Comparator, Adders, Multipliers, Sequential logic- Flip Flops, Registers, and Counters, Memory- Introduction to back end tools.

9

9

9

9

9